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PREFACE 

This book is intended for a first undergraduate course in modem abstract algebra. 
Linear algebra is not a prerequisite. The flexible design makes the text suitable for 
courses of various lengths and different levels of mathematical sophistication, in
cluding (but not limited to) a traditional abstract algebra course, or one with a more 
applied flavor, or a course for prospective secondary school teachers. As in previous 
editions, the emphasis is on clarity of exposition and the goal is to produce a book that 
an average student can read with minimal outside assistance. 

New in the Third Edition 

Groups Fir st Option Those who believe (as I do) that covering rings before groups 
is the better pedagogical approach to abstract algebra can use this edition exactly as 
they used the previous ones. 

Nevertheless, anecdotal evidence indicates that some instructors have used the sec
ond edition for a "groups first" course, which presumably means that they liked other 
aspects of the book enough that they were willing to take on the burden of adapting it to 
their needs. To make life easier for them (and for anyone else who prefers "groups first") 

It is now possible (though not necessary) to use this text for 

a course that covers groups before rings. 

See the TO THE INSTRUCTOR section for details. 
Much of the rewriting needed to make this option feasible also benefits the "rings 

first" users. A number of them have suggested that complete proofs were needed in 
parts of the group theory chapters instead of directions that said in effect "adapt the 
proof of the analogous theorem for rings". The full proofs are now there. 

Proofs for Beginners Many students entering a first abstract algebra course have 
had little (or no) experience in reading and writing proofs. To assist such students (and 
better prepared students as well), a number of proofs (especially in Chapters 1and2) 
have been rewritten and expanded. They are broken into several steps, each of which 
is carefully explained and proved in detail. Such proofs take up more space, but I think 
it's worth it if they provide better understanding. 

So that students can better concentrate on the essential topics, various items from 
number theory that play no role in the remainder of the book have been eliminated 
from Chapters 1 and 2 (though some remain as exercises). 

ix 
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x Preface 

More Examples and Exercises In the core course (Chapters 1-8), there are 35% 
more examples than in the previous edition and 13% more exercises. Some older exer
cises have been replaced, so 18% of the exercises are new. The entire text has about 350 
examples and 1600 exercises. For easier reference, the examples are now numbered. 

Coverage The breadth of coverage in this edition is substantially the same as in 
the preceding ones, with one minor exception. The chapter on Lattices and Boolean 
Algebra (which apparently was rarely used) has been eliminated. However, it is avail
able at our website (www.CengageBrain.com) for those who want to use it. 

The coverage of groups is much the same as before, but the first group theory chapter 
in the second edition (the longest one in the book by far) has been divided into two chap
ters of more manageable size. This arrangement has the added advantage of making the 
parallel development of integers, polynomials, groups, and rings more apparent. 

Endpapers The endpapers now provide a useful catalog of symbols and notations. 

Website The website (www.CengageBrain.com) provides several downloadable 
programs for TI graphing calculators that make otherwise lengthy calculations in 
Chapters 1 and 14 quite easy. It also contains a chapter on Lattires and Boolean 
Algebra, whose prerequisites are Chapter 3 and Appendices A and B. 

Continuing Features 

Thematic Development The Core Course (Chapters 1-8) is organized around two 
themes: Arithmetic and Congruence. The themes are developed for integers (Chapters 1 

and2),polynomials (Chapters 4and 5), rings(Chapters3 and6), andgroups(Chapters 7 

and 8). See the Thematic Table of Contents in the TO THE STUDENT section for a 
fuller picture. 

Congruence The Congruence theme is strongly emphasized hi the development of 
quotient rings and quotient groups. Consequently, students can see more clearly that 
ideals, normal subgroups, quotient rings, and quotient groups are simply an extension 
of familiar concepts in the integers, rather than an unmotivated mystery. 

Useful Appendices These contain prerequisite material (e.g., logic, proof, sets, 
functions, and induction) and optional material that some instructors may wish to 
introduce (e.g., equivalence relations and the Binomial Theorem). 
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xii 

T 0 THE INSTRUCTOR 
Here are some items that will assist you in making up your syllabus. 

Course Planning 

Using the chart on the opposite page, the Table of Contents (in which optional sections 
are marked), and the chapter introductions, you can easily plan courses of varying length, 
emphasis, and order of topics. If you plan to cover groups before rings, please note that 
Section 7.1 should be replaced by Section 7.1. A (which appears immediately after 7.1). 

Appendices 

Appendix A (Logic and Proof) is a prerequisite for the entire text. Prerequisites for 
various parts of the text are in Appendices B-F. Depending on the preparation of 
your students and your syllabus, you may want to incorporate some of this material 
into your course. Note the following. 

• Appendix B (Sets and Functions): The middle part (Cartesian 
products and binary operations) is first used in Section 3.1 [7.1.A].* The last 
five pages (injective and surjective functions) are first used in Section 3.3 [7.4]. 

• Appendix C (Induction): Ordinary induction (Theorem C.1) is first used 
in Section 4.4. Complete Induction (Theorem C.2) is first used in Section 4.1 
[9.2]. The equivalence of induction and well-ordering (Theorem C.4) is not 
needed in the body of the text. 

• Appendix D (Equivalence Relations): Important examples of 
equivalence relations are presented in Sections 2.1, 5.1, 6.1, and 8.1, but the 
formal definition is not needed until Section 10.4 [9.4]. 

• Appendix E (The Binomial Theorem): This is used only in Section 
11.6 and occasional exercises earlier. 

• Appendix F (Matrix Algebra): This is a prerequisite for Chapter 16 but 
is not needed by students who have had a linear algebra course. 

Finally, Appendix G presents a formal development of polynomials and indetermi
nates. I personally think it's a bit much for beginners, but some people like it. 

Exercises 

The exercises in Group A involve routine calculations or short straightforward proofs. 
Those in Group B require a reasonable amount of thought, but the vast majority 
should be accessible to most students. Group C consists of difficult exercises. 

Answers (or hints) for more than half of the odd-numbered exercises are given 
at the end of the book. Answers for the remaining exercises are in the Instructor's 
Manual available to adopters of the text. 

"The section numbers in brackets are for groups-first courses. 
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NOTE: To go quickly from Chapter 3 to Chapter 6, first cover Section 4.1 (except the 
proof of the Di vision Algorithm), then proceed to Chapter 6. If you plan to cover 
Chapter 11, however, you will need to cover Chapter 4 first. 

•A solid arrow A--->B means thatA is a prerequisite for B; a dashed arrow A-... 8 means that B depends 

only on parts of A (see the Table of Contents for specifics). For the dotted arrow S ··>6, see the Note 

at the bottom of the chart. 
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xiv 

TO THE STUDENT 

Overview 

This book begins with grade-school arithmetic and the algebra of polynomials from 
high school (from a more advanced viewpoint, of course). In later chapters of the 
book, you will see how these familiar topics fit into a larger framework of abstract 
algebraic systems. This presentation is organized around these two themes: 

Arithmetic You will see how the familiar properties of division, remainders, factor
ization, and primes in the integers carry over to polynomials, and then to more general 
algebraic systems. 

Congruence You may be familiar with "clock arithmetic".* This is an example of 
congruence and leads to new finite arithmetic systems that provide a model for what 
can be done for polynomials and other algebraic systems. Congruence and the related 
concept of a quotient object are the keys to understanding abstract algebra. 

Proofs 

The emphasis in this course, much more than in high-school algebra, is on the rigor
ous logical development of the subject. If you have had little experience with reading 
or writing proofs, you would do well to read Appendix A, which summarizes the basic 
rules of logic and the proof techniques that are used throughout the book. 

You should first concentrate on understanding the proofs in the text (which is quite 
different from constructing a proof yourself). Just as you can appreciate a new build
ing without being an architect or a contractor, you can verify the validity of proofs 
presented by others, even if you caKt see how anyone ever thought of doing it this way 
in the first place. 

Begin by skimming through the proof to get an idea of its general outline before 
worrying about the details in each step. It's easier to understand an argument if you 
know approximately where it's headed. Then go back to the beginning and read the 
proof carefully, line by line. If it says "such and such is true by Theorem 5.18", check 
to see just what Theorem 5.18 says and be sure you understand why it applies here. If 
you get stuck, take that part on faith and finish the rest of the proof. Then go back and 
see if you can figure out the sticky point. 

*When the hour hand of a clock moves 3 hours or 15 hours from 12, it ends in the same position, so 

3 = 15 on the clock. If the hour hand starts at 12 and moves B hours, then moves an additional 

9 hours, it finishes at 5; so B + 9 = 5 on the clock. 
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To the Student xv 

When you're really stuck, ask your instructor. He or she will welcome questions that 
arise from a serious effort on your part. 

Exercises 

Mathematics is not a spectator sport. You can't expect to learn mathematics without 
doing mathematics, any more than you could learn to swim without getting in the 
water. That's why there are so many exercises in this book. 

The exercises in group A are usually straightforward. If you can't do almost all of 
them, you don't really understand the material. The exercises in group B often require 
a reasonable amount of thought-and for most of us, some trial and error as well. But 
the vast majority of them are within your grasp. The exercises in group C are usually 
difficult ... a good test for strong students. 

Many exercises will ask you to prove something. As you build up your skill in un
derstanding the proofs of others (as discussed above), you will find it easier to make 
proofs of your own. The proofs that you will be asked to provide will usually be much 
simpler than proofs in the text (which can, nevertheless, serve as models). 

Answers (or hints) for more than half of the odd-numbered exercises are given at 
the back of the book. 

Keeping It All Straight 

In the Core Course (Chapters 1-8), students often have trouble seeing how the various 
topics tie together, or even if they do. The Thematic Table of Contents on the next two 
pages is arranged according to the themes of arithmetic and congruence, so you can 
see how things fit together. 
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Thematic Table of Contents for the Core Course xvii 

Directions: Reading from left to right across these two pages shows how the theme or 

subtheme in the left-hand column is developed in the four algebraic systems listed i n  the 
top row. Each vertical column shows how the themes are carried out for the system listed 
at the top of the column. 

RINGS* GROUPS* 

3. Rings 7. Groups 

3.1 Rin� 7. l Definition and Examples of Groups 
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*In the Arithmetic Theme, the sections of Chapters 3 (Rings) and 8 (Groups) do not correspond to the individual 

subthemes (as do the sections of Chapters 1 and 4). For integral domains, however, there is a correspondence, as 

you will see in Chapter 10 (Arithmetic in Integral Domains). 
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CHAPTER 1 

Arithmetic in "11._ Revisited 

Algebra grew out of arithmetic and depends heavily on it. So we begin our study of 
abstract algebra with a review of those facts from arithmetic that are used frequently 
in the rest of this book and provide a model for much of the work we do. We stress 
primarily the underlying pattern and properties rather than methods of computation. 
Nevertheless, the fundamental concepts are ones that you have seen before. 

• The Division Algorithm 

Our starting point is the set of all integers Z = {O, ± 1, ±2, . . .  } . We assume that you 
are familiar with the arithmetic of integers and with the usual order relation ( <) on 
the set Z. We also assume the 

WELL-ORDERING AXIOM Every nonempty subset of the set of nonnegatiVe 
integers contains a smallest element. 

If you think of the nonnegative integers laid out on the usual number line, it is 
intuitively plausible that each subset contains an element that lies to the left of all the 
other elements in the subset-that is the smallest element. On the other hand, the Well
Ordering Axiom does not hold in the set Z of all integers (there is no smallest negative 
integer). Nor does it hold in the set of all nonnegative rational numbers (the subset of 
all positive rationals does not contain a smallest element because, for any positive ratio
nal number r, there is always a smaller positive rational-for instance, r/2). 

NOTE: The rest of this chapter and the next require Theorem 1.1, which 
is stated below. Unfortunately, its proof is a bit more complicated than 
is desirable at the beginning of the course, since some readers may not 
have seen many (or any) formal mathematical proofs. To alleviate this 

3 
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4 Chapter 1 Arithmetic in Z Revisited 

situation, we shall first look at the origins of Theorem 1.1 and explain the 
idea of its proof. Unless you have a strong mathematical background, we 
suggest that you read this additional material carefully before beginning 
the proof. 

To ease the beginner's way, the proof itself will be broken into several 
steps and given in more detail than is customary in most books. However, 
because the proof does not show how the theorem is actually used in prac
tice, some instructors may wish to postpone the proof until the class has 
more experience in proving results. In any case, all students should at least 
read the outline of the proof (its first three lines and the statements of 
Steps 1-4). 

So here we go. Consider the following grade-school division problem: 

Quotient 
Divisor 
Divicknd 

---+ 11 

�· 
12 

7 
R£mainckr ---+ 5 

Check: 11 +--- Quotient 
X7 +--- DiviSor 
77 

+ 5 +--- R£mainder 
82 +--- Divicknd 

The division process stops when we reach a remainder that is less than the divisor. 
All the essential facts are contained in the checking procedure, which may be verbally 
summarized like this: 

dividend = (divisor) (quotient) + (remainder). 

Here is a formal statement of this idea, in which the dividend is denoted by a, the 
divisor by b, the quotient by q, and the remainder by r: 

Theorem 1.1 The Division Algorithm 
Let a, b be integers with b > 0. Then there exist unique integers q and r such 
that 

a=bq+r and Os r<b. 

Theorem 1.1 allows the possibility that the dividend a might be negative but re
quires that the remainder r must not only be less than the divisor b but also must be 
nonnegative. To see why this last requirement is necessary, suppose a = -14 is divided 
by b = 3, so that -14 = 3q + r. If we only require that the remainder be less than 
the divisor 3, then there are many possibilities for the quotient q and remainder r, 

including these three: 

-14 = 3(-3) + (-5), with -5 < 3 

-14 = 3(-4) + (-2), with -2 < 3 

-14 = 3(-5) + 1, with 1 < 3 

[Here q = -3 and r = -5.] 

[Here q = -4 and r = -2.] 

[Here q = -5 and r = l.]. 
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1.1 The Division Algorithm 5 

When the remainder is also required to be nonnegative as in Theorem 1.1, then there 
is exactly one quotient q and one remainder r, namely, q = -5 and r = 1, as will be 
shown in the proof. 

The fundamental idea underlying the proof of Theorem 1.1 is that division is just 
repeated subtraction. For example, the division of 82 by 7 is just a shorthand method 
for repeatedly subtracting 7: 

82 
-7 
75 +--82- 7 · l 

-7 
68 +--82-7 · 2 

-7 
61+--82-7. 3 

-7 
5 4  +--82- 7 ·4 

-7 
47 +--82-7 · 5 

-7 
40+--82- 7·6 

40 

-7 
33 +---- 82 - 7 . 7 

-7 
26 +---- 82 -7 . 8 

-7 
19 +---- 82 - 7. 9 

-7 
12 +---- 82 -7. 10 

-7 
5 +---- 82 - 7 • 11 

The subtractions continue until you reach a nonnegative number less than 7 (in this 
case 5). The number 5 is the remainder, and the nwnber of multiples of 7 that were 
subtracted (namely, 11, as shown at the right of the subtractions) is the quotient. 

In the preceding example we looked at the numbers 

82 - 7 · 1, 82 - 7 · 2, 82 - 7 · 3, and so on. 

In other words, we looked at numbers of the form 82 - 7x for x""' 1, 2, 3, . . . and 
found the smallest nonnegative one (namely, 5). In the proof of Theorem 1.1 we shall 
do something very similar. 

Proof of Theorem 1.1* ... Let a and b be fixed integers with b > 0. Consider the sets 
of all integers of the form 

a-bx, where x is an integer and a -bx � 0. 

Note that x may be any integer-positive, negative, or 0---but a -bx must 
be nonnegative. There are four main steps in the proof, as indicated below. 

Step I Show that Sis nonempty by finding a valU£ for x such that a -bx � 0. 

Proof of Step I: We first show that a + b la I � 0. Since b is a positive 
integer by hypothesis, we must have 

b�l 

bja] <'!: Jaj 

bJal �-a 

a+ bjaj � 0. 

[Multiply both sides of the preceding inequality by Jaj.] 

[Because lal <?:-a by the defmition of absolute value.] 

•for an alternate proof by induction of part of the theorem, see Example 2 in Appendix C. 
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6 Chapter 1 Arithmetic in l Revisited 

Now let x = -!al. Then 

a - bx= a - b(-lal) =a+ bla[2: 0. 

Hence, a - bx is in S when x = -!al, which means that Sis nonempty. 

Step 2 Find q and r such that a = bq + rand r � 0. 

Proof of Step 2: By the Well-Ordering Axiom, S contains a smallest 
element-call it r. Since r E S, we know that r 2: 0 and t =a - bx fo r  
some x, say x = q. Thus, 

r = a - bq and r 2: 0, or, equivalently, a = bq + r and r ?.: 0. 

Step 3 Show that r < b. 

Proof of Step3: We shall use a "proof by contradiction" (which is 
explained on page 506 of Appendix A). We want to show that r < b. 
So suppose, on the contrary, that r 2: b. Then r - b 2:: 0, so that 

0 s r - b = (a - bq) - b = a - b(q + 1). 

Since a - b(q + 1) is nonnegative, it is an element of Shy definition . But 
since bis positive, it is certainly true that r - b < r. Thus 

a - b(q + 1) = r - b < r. 

The last inequality states that a - b(q + 1)-which is an element of 
S-is less than r, the smallest element of S. This is a contradiction. 
So our assumption that r ;;::: bis false, and we conclude that r < b. 
Therefore, we have found integers q and r such that 

a=bq+r and 0 s r < b. 

Step 4 Show that r and q are the only numbers with these properties (that's what 
"unique" means in the statement of the theorem). 

Proof of Step 4: To prove uniqueness, we suppose that there are integers 
q1 and r1 such that a = bq1 + r1 and 0 s r1 < b, and prove that q1 = q 
and r1 = r. 

Since a = bq + r and a = bq1 + rh we have 

so that 

(*) 

Furthermore, 

bq + r = bq1 + r1 

b(q - q1) = r1 - r. 

Osr<b 

0 s r1 < b. 
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1.1 The Division Algorithm 7 

Multiplying the first inequality by -1 (and reversing the direction of the 
inequality), we obtain 

-b< -rs O 

0 s r1 <b. 

Adding these two inequalities produces 

-b < r1 -r<b 

-b < b(q - q1) < b [By Equation(*)] 

-1 < q - q1 < 1 [Divide each term by b.] 

But q - q1 is an integer (because q and q1 are integers) and the only 
integer strictly between -1 and 1 is 0. Therefore q - q1 = 0 and q = q1• 
Substituting q - q1 = 0 in Equation(*) shows that r1 - r = 0 and 
hence r = r1• Thus the quotient and remainder are unique, and the 
proof is complete. • 

When both the dividend a and the divisor bin a division problem are positive, then 
the quotient and remainder are easily found either by long division (as on page 4) or 
with a calculator when the integers involved are larger. 

EXAMPLE 1 

Suppose a = 4327 is divided by b = 281. Entering a/ b in a calculator produces 
15.39857 · ··.The integer to the left of the decimal point (15 here) is the quo
tient q and the remainder is 

r =a - bq = 4327 - 281 • 15 = 112. 

These calculations are shown on the graphing calculator screen in Figure 1. 

4327/281 
15.39857651 

4327-281*15 
112 

FIGURE1 

When the dividend a is negative, a slightly different procedure is needed so that the 
remainder will be nonnegative. 

*The symbol• indicates the end of a proof. 
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8 Chapter 1 Arithmetic in 7L Revisited 

EXAMPLE 2 

Suppose a= -7432 is divided b y  b = 453. Entering a/b in a calculator pro
duces -16.40 618 • · ·.In this case the quotient q is not -16; instead, 

q = (the integer to the left of the decimal point) -1 = -16 - 1 = -17. 

(Without this adjustment, you will end up with a negative remainder.) Now, as 

usual, 
r =a - bq = -7432 - 453 · (-17) = 269 . 

The preceding calculations are summarized in the calculator screen in Figure 2. 

-74321'453 
-16.40618102 

-7432-453*( -17) 
269 

FIGURE2 

• Exercises 

A. In Exercises 1 and2,find the quotient q and remainder r when a is divided by b, 
without using technology. Check your answers. 

1. (a) a:=: 17;b=:4 

2. (a) a ""' -51; b = 6 

(b) a= O; b = 19 

(b) a= 302; b = 19 

(c) a = -17; b = 4 

(c) a= 2000; b = 17 

In Exercises 3 and 4, use a calculator to find the quotient q and remainder r when 
a is divided by b. 

3. (a) a = 517; b = 83 (b) a = -612; b = 74 

(c) a = 7,965,532; b = 127 

4. (a) a= 8,126,493; b = 541 (b) a= -9,217,645; b = 617 

(c) a= 171,819,920; b = 4321 

5. Let a be any integer and let b and e be positive integers.. Suppose that when 
a is divided by b, the quotient is q and the remainder is r, so that 

a = bq + r and 0 s r < b. 

If ae is divided by be, show that the quotient is q and the remainder is re. 

B. 6. Let a, b, e, and q be as in Exercise 5. Suppose that when q is divided by e, the 
quotient is k. Prove that when a is divided by be, then the quotient is also k. 

7. Prove that the square of any integer a is either of the form 3k or of the 
form 3k + 1 for some integer k. [Hint: By the Division Algorithm, a must 
be of the form 3q or 3q + 1 or 3q + 2.] 
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